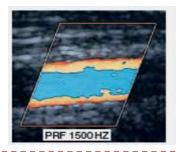
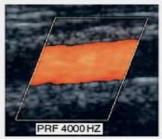
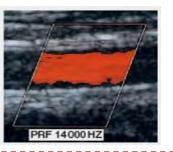

SUMMARY OF DOPPLER PARAMETERS


N.B.THIS SUMMARY IS HELPFUL FOR WHO'S ALLREADY TRAINED TO USE DOPPLER


- **MAIN TYPES OF FLOW:** Arterial Venous
- **SETTING:** Don't forget to adjust
 - O Mode of scan "Arterial, Venous, Abd., scrotaletc"
 - **Probe**: Curved → Deep / Linear → Superficial
 - o Color Gain
 - **Angle** = < 60 (Not 90, as Cos 90 = 0 \rightarrow No Doppler signal"
 - O "Gate" Sample Volume " = " at middle part of Vessel
 - PRF ": Decrease → detect lower velocities "



▲ ALIASING = Signal disturbed → Non Homogenous color flow

≥ How to Compensate Aliasing? by:

- O Increase PRF "Pulse Repeated Frequency" / If use max PRF, then:
- O Decrease Depth

O Lower Frequency

O Shift base line

O Increase Angle "with in limits"

△ COLOR VELOCITY SCALE: Increase it = adjust setting to detect higher velocities , so Ex.

High CVS 69 Cm/Sec

Apparent absent PV Flow

CVS 30 Cm/Sec

\() Detect Normal PV Flow

CVS 2 Cm/Sec

≥ Disturbed PV Flow "Aliasing"

2 Directions of Scan:

At least 2 directions
 Vertical & Horizontal +/- Oblique



PATTERNS OF FLOW

TRIPHASIC	BIPHASIC	MONOPHASIC
•3 stages:	2 Stages	= SYSTOLIC FLOW & STOP IN
Rapid forward → Slow back word →	RAPID FOWRWARD → SLOW	DIASTOLE
slow forward.	FORWARD	 MOSTLY ABNORMAL
•Flow in peripheral artery	• Flow in central arteries	
= " Flow with peripheral resistance"	= "Low resistance flow"	NORMAL IN MCA 1 ST TRIMESTER
FR 20th 54* 3 mm + R Paut CCA 20 + R Paut CCA 21	FR 1644 57 40 40 40 40 40 40 40 40 40 40 40 40 40	RT CFA

Base line = Zero Line / Every side of it = Different Direction

"Forward & Backward

ARTERIAL		VENOUS	
Triphazic	Limbs - Aorta	🔰 IJV ,Brachiocephalic	Triphasic
		Hepatic Veins	
Biphazic	CCA - ICA & ECA	■Limbs	Continuou/
	"Visceral "Celiac - SMA — Renaletc	■Portal Vein	with
Monophasic	"in adult "Abnormal	■Others	minimal fluctuation
-	= Intrauterine "MCA" in 1 st trimester		rioctoticion

TERMS:

O **PSV**: Peak Systolic Velocity

o **EDV**: End Diastolic Velocity

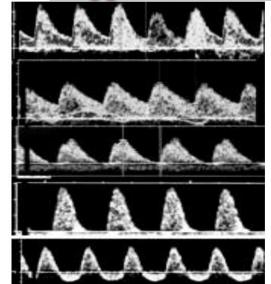
O **PRF**: Pulse Repeated Frequency

O SD RATIO: Systoilc Diastolic Ratio

O RI: Resistive Index

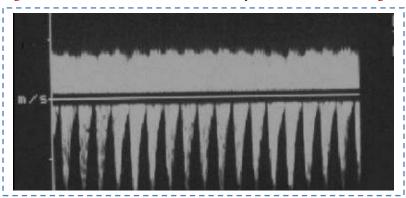
O PI : Pulstility Index

PARAMETERS


UMBLICAL ARTERY

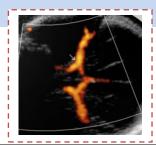
Indices Summary "upper limit" Rough measures

Age w	SD	PI	RI
20	< 6	1.5	0.85
25	< 5	1.4	0.80
30	4	1.3	0.75
35	< 3.5	<1.2	0.70
40	< 3.2	1.08	< 0.60

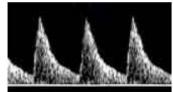

Doppler Flow Velocity in Umbilical A.

- (A) Normal umbilical artery at 18 weeks shows relatively high resistance, but consistent diastolic flow.
- (B) Normal umbilical artery at 36 weeks, low resistance, generous diastolic flow.
- (C) High resistance, diastolic velocity low.
- (D) Absent end-diastolic velocity (AEDV).
- (E) <u>Reversed</u> diastolic velocity (REDV) in severe intrauterine growth restriction (IUGR).

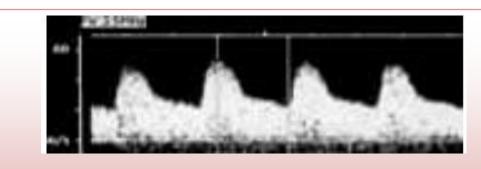
2 UMBLICAL YEIN


- O Normally Continuous non fluctuation flow
- O Pulsating flow occurs in Placental insufficiency + arterial flow changes

MCA Middle Gerebral A.:


- Can use ANGLE = $0 / * COS 0 = 1 \rightarrow Best Doppler signal$
- \circ IN Placental insufficiency \rightarrow less blood reach brain

→ MCA vasodilatation → Decrease resistance. "Brain sparing effect"

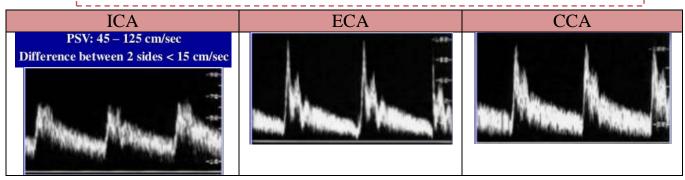


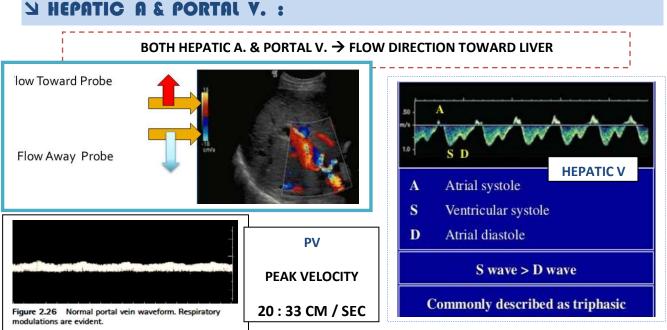
Normal flow of the Middle Cerebral Artery in 10 trimester

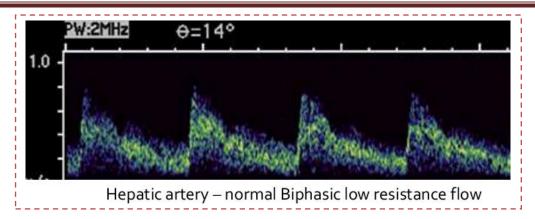
Normal flow of the Niddle Cerebral Artery in 2° and 3° trimester

'Brain sparing'

MCA - lower peak, much higher diastolic velocity suggests cerebro-vasodilation


SD RATIO UA


of MCA > alway/ higher than > Umbilical A.


U.A. S/D ratio				
Age w	SD			
20	< 6	S/D ratio		
25	< 5			
30	4	MCA > UA		
35	< 3.5			
40	< 3.2			

U CAROTID A..:

PARA METERS		PSV	EDV	RI
Artery		cm/sec	cm/sec	
E.C.A				
I C A	N	47–73	13–21	0.64 : 0.80
	Α	62–90	23–37	0.54 : 0.66
CCA	A	78 :118	20–32	0.84:0.72
Vertebral Artery	N	27 - 57	5 : 11	0.73: 0.89
	A	40 : 60	14–22	0.58: 0.73
Anterior cerebral	N	12–35	6–20	0.60-0.80
A.				
M.C.A.	N	20–70	8–20	0.60-0.80
Basilar	N	30–80	5–20	0.60-0.80

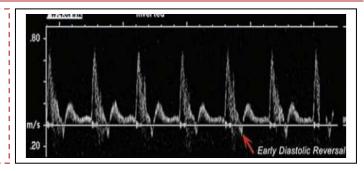
≥ RENALA:

- low resistance
- R l is < 0.7
- ESP (Early systolic peak) present
- Rapid acceleration to peak systole (< .07s)

PVS < 180 cm/sec normal test

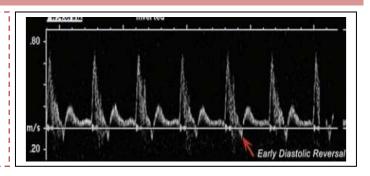
PVS < 180 cm/sec non-graduated stenosis

PSV > 180 cm/sec & RAR < 3.5 stenosis < 60%


PSV > 180 cm/sec & RAR > 3.5 stenosis > 60%

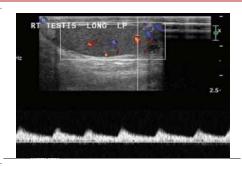
No renal artery flow & kidney < 9.0 cm occlusion

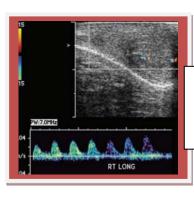
PSV- peak systolic velocity; RAR renal-aortic ratio.


UPPER UMB AS.:

Subclav. A	Child	PSV
		<105 Cm/Sec
	Adult	105
Axillary A.	С	<80
	Α	80
Brachial A	С	<60
	Α	60

U LOWER LIMB AS. :


CFA	A	PSV
		100 Cm/sec
SFA	Α	80–90
Popl. A.	A	70
Tibeo-peroeal	Α	40 –50



TESTICULAR AS. :

PSV	EDV	RI	PI
4.0-19.5	1.6-6.9	0.48-0.75	0.7-2.3

NB. Younger Age → Higher RI

- Waveform obtained in a 2-month-old boy
 testicular volume of 0.7 Cm
 shows higher resistance "Higher RI"

JULY 2018